Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Multimode lasing at sub-300 nm wavelengths is demonstrated by optical pumping in AlGaN heterostructures grown on single-crystal AlN substrates by plasma-assisted molecular beam epitaxy. Edge-emitting ridge-based Fabry–Pérot cavities are fabricated with the epitaxial AlN/AlGaN double heterostructure by a combined inductively coupled plasma reactive ion etch and tetramethylammonium hydroxide etch. The emitters exhibit peak gain at 284 nm and modal linewidths on the order of 0.1 nm at room temperature. The applied growth technique and its chemical and heterostructural design characteristics offer certain unique capabilities toward further development of electrically injected AlGaN laser diodes.more » « less
-
High thermal conductivity and ultrahigh thermal boundary conductance of homoepitaxial AlN thin filmsWurtzite aluminum nitride (AlN) has attracted increasing attention for high-power and high-temperature operations due to its high piezoelectricity, ultrawide-bandgap, and large thermal conductivity k. The k of epitaxially grown AlN on foreign substrates has been investigated; however, no thermal studies have been conducted on homoepitaxially grown AlN. In this study, the thickness dependent k and thermal boundary conductance G of homoepitaxial AlN thin films were systematically studied using the optical pump–probe method of frequency-domain thermoreflectance. Our results show that k increases with the thickness and k values are among the highest reported for film thicknesses of 200 nm, 500 nm, and 1 μm, with values of 71.95, 152.04, and 195.71 W/(mK), respectively. Our first-principles calculations show good agreement with our measured data. Remarkably, the G between the epilayer and the substrate reported high values of 328, 477, 1180, and 2590 MW/(m2K) for sample thicknesses of 200 nm, 500 nm, 1 μm, and 3 μm, respectively. The high k and ultrahigh G of homoepitaxially grown AlN are very promising for efficient heat dissipation, which helps in device design and has advanced applications in micro-electromechanical systems, ultraviolet photonics, and high-power electronics.more » « less
-
Abstract This report classifies emission inhomogeneities that manifest in InGaN quantum well blue light-emitting diodes grown by plasma-assisted molecular beam epitaxy on free-standing GaN substrates. By a combination of spatially resolved electroluminescence and cathodoluminescence measurements, atomic force microscopy, scanning electron microscopy and hot wet potassium hydroxide etching, the identified inhomogeneities are found to fall in four categories. Labeled here as type I through IV, they are distinguishable by their size, density, energy, intensity, radiative and electronic characteristics and chemical etch pits which correlates them with dislocations. Type I exhibits a blueshift of about 120 meV for the InGaN quantum well emission attributed to a perturbation of the active region, which is related to indium droplets that form on the surface in the metal-rich InGaN growth condition. Specifically, we attribute the blueshift to a decreased growth rate of and indium incorporation in the InGaN quantum wells underneath the droplet which is postulated to be the result of reduced incorporated N species due to increased N 2 formation. The location of droplets are correlated with mixed type dislocations for type I defects. Types II through IV are due to screw dislocations, edge dislocations, and dislocation bunching, respectively, and form dark spots due to leakage current and nonradiative recombination.more » « less
An official website of the United States government
